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OSCILLATOR 

A nonlinear Van der Pol oscillator with impact 
Dependence of all possible forms of the system 
mined. Conditions of steady stochastic motion 
space is divided in regions that qualitatively 
of the system. 

energy absorber is considered. 
phase pattern on parameters is deter- 
onset are defined. The parameter 
correspond to differentphasepattems 

1. The investigated system. The nonlinear Van der Pol oscillator 
x" + 26 (1 - cm*) x' + ($2 = 0 (1.1) 

is the simplest typical system in which auto-oscillations are induced by the supplyofenergy 
at small oscillations and by its dissipation at large oscillations /1,2/. This simple phys- 
ical concept may be refined by considering consecutive values of velocity x' as the coordin- 
ate x approaches zero, i.e. by investigating the point mapping of semiaxis 5 = 0, x'> 0 in- 
to itself, which is generated by phase trajectories of system (1.1). Curves of such point 
mappings appear in Fig.1, where curves 1 and 2 correspond to 6 =- 0.2 and 6 = -0.05 for 
a = 1, and curves 3 and 4 relate to 6 = 0.05 and 6 ~0.2 when c = -1. These curves imply 
that in the case of 6<0 and a>0 and small x the successive values of x-are higher than 
the preceding ones, while for large x they are lower. owing to this dependence of the value 
of successive x' on the preceding one, there exists an x' whose value is the same as that of 
the following one, and corresponds to stable periodic auto-oscillations. 

Introduction in the nonlinear oscillator (1.1) of energy absorption consequenct to a 
shock at x = 0 and x'> a that reduces velocity x'by some quantity p is investigated below. 
It is shown that then not only periodic, but also stochastic auto-oscillations (one of the 
later cases is shown in Fig.2) may be generated. Depending on initial conditions and para- 
meters, besides the usual periodic and stochastic auto-oscillations there may exist either 
only periodic or only stochastic auto-oscillations. A change of parameters may alterperiodic 
auto-oscillations to stochastic, and also the emergence of stochastic auto-oscillations in 
consequence of loss of stability of the equilibrium state. 

The indicated energy absorption mechanism thus reduces the nonlinear oscillator (1.1) to 
a system in which stochastic auto-oscillations are realized. That system is not only simple 
but, also, typical, since the appearance in it of stochastic auto-oscillations does notdepend 
on the specific form of the absorber, but on its presence /3/. We would stress that the 
described shock mechanism is to be considered as an energy absorber only when the velocityx+' 
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after the shock is lower than x_-' before the shock, which is evidently the case when ~<a. 
Investigation of the nonlinear oscillator (1.1) with additional energy absorber in the 

particular case of a = 0 appears in /4/. Below, we consider the general case. All possible 
forms of point mapping of the secant x=0,x'> a into itself are determined and their depend- 
ence on parameters is established. The analysis is based on qualitative as well as on analy- 
tic considerations and, also, on numerical calculation on a computer. As a preliminary, we 
consider the nonlinear Van der Pol oscillator. 

2. Point mapping generated by phase trajectories of Van der Pol equations. 
In new variables 

t, = tw-', x1 =I fX1'/'5 

the equations of motion of this system, with retained previous notation, are of the form 

x" + 26 (1 - ax~)x' $ x = 0 (I # 0 and x = 0, 5' < 4 (2.1) 

x+ - '=r'- P (x = 0, 2' 2 a) 

where x+' and x_' are limit values of x' for the increase and decrease of time up to x =0 and 
x.2 a,a= &I depending on the sign of a in the input equation (1.1). The transformedsystem 

of equations contains three parameters 6,p,a, when p = 0 it becomes the Van der Pol oscil- 
lator whose motions depend on parameter 6 and the value of a= f 1. The point mapping 

Yl = f (!I) (2.2) 

of the secant half-line z = 0,Y = x'> a is obtained numerically using a computer. The results 
are presentedinFig.1 in the form of curves, and tabulated below. Note that the substitution 
of--6 for 6 reverses mapping (2.2) 
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When a=+iand S<O the point mapping curves intersect the bisectrix and correspond 
to the phase pattern of Fig.3,a. Whena = $1 and S> 0 the point mapping curves are obtain- 
ed frcan the respective curves of Fig.1 by interchanging axes Y and Y,. A change of the 
equilibrium state stability and of the limit cycle to the opposite to that in Fig.3,a corres- 
ponds to this in the phase pattern. When in the case a = -1 and 6> 0 the point mapping 
curves lie entirely belowthebisectrix and conform to the phase pattern of Fig.3,b. Finally, 
when a = -1 and 6< O\ this curve lie above the bisectrix. The presence of a singleunstable 

@' $bX 
equilibrium state corresponds to them in the phase pat- 
tern. The values of Y, appearing in the upper part of 
the Table 1 correspond to a = 1 and various values of 
Y and 6<0, while those in its lower part correspond 
to a = - 1 and various values of Y and 6> 0. 

Fig.3 

3. Investigation of point mappingwhenp+O. 
In this case the point mapping of segment x = 0, I' > a 
into itself can be expressed in the form 

1 f(Y) 9 f(Y)<U 
Yr= f(Y)-P, f(y)>a (3.1) 

where f(y) is the function that defines the point mapping (2.2) generated by phase trajector- 
ies of the Van der Pal oscillator for the same parameters 6 and a. The form of this point 
mapping was explained in Sect.2. Various possible forms of curves of point mapping (3.1) 
shown in Figs.4-7 depend on four parameters 6,a = &I, p> 0 and a>O+ The correspond, re- 
spectively, to the following cases: 1) a = 1 and 6<0,2) a=1 and S>O, 3) a=-1 and 
6<0, and 4) a = --1 and 6> 0. Let us briefly describe these cases. 

1. a =l,&<O. Let y, and y0 be points at which f (y*) = y, and fy' (Yo) = 1 (YIJ< Ys). 
When a) a> Ye mapping (3.1) contains an entirely stable stationary point y, which is asymp- 
totically approached by all points, except point y=Or in successive transformations (Fig. 

4,a). When b) a< y, and p< a - (_fy’ (a))-' mapping (3.1) has also the entirely stable point 
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y,,different from point II* (Fig.4,b). When a< I/* and p> a - (f,‘(n))-’ several different 
cases presented in Figs.4,c-g, are possible, They are realized when the inequalities 

cf f(&J < se &It a - Vi Wf'+zP< 6; 

df gi, e if < f&& a - VY' faH+-=zp rE; f W - PO; 
e) h<=a(ffh& fbJ-h~PK% 
f) O<a<h, a - Vi (a))-’ c P K f (~~1 - yo; 

g 3 0 < a < PO, J (yo) - Yo < P ( a. 

are satisfied. 

a b C d e 
Fig.5 

a b C 

Fig. 6 Fig. 7 

In Case d there is a stable stationary pointy,, and segment J 3 (a - pTu) of stochastic 
Bl0?zions, and in Case g we have only the segment J of stochastic motions, Thus in Case g there 
exists an entirely stable stochastic auto-Oscillation I and in case ewe have, besides the 
stable stochastic auto-osCi:illation, the usual stable periodic oscillatian. 

Let us clarify the concept of stochastic auto-oscillations. The curves of Figs,4,@ and 
g show that all points of segment (O,Y**) in case e, or of the whol.e semlaxis (0,~) in case 
g pass after a certain number of transformations on segment j=(a- p,a) and remain on the 

later. Since along the whole of segment J the derivative dsr,&>i, no stable periodic motions 
are possible along it. As shown in /5/, in that Case Liapunov unstable stochastic motions. 
stooehastic auto_osCillati0ns, take place along segment 3 I which are exponentailly unstable 
and densely intersect segment J (except some individual motions of general measure sero,among 
which there are various unstable periodic motions). 

2. a== I,6> 0. This Case admits five different types of point mapping. They axe shown 
in Figs.5,*2-e and correspond to the following range of parameter values: 
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a) a > Y,, P > max (f (4 - a, a - Y,); 
4 a >Y,,f@)--a(p<a-Yy, 

Curves of these mappings show that we have in all cases a stable equilibrium state with 
a limited attraction region, and that in some cases stochastic auto-oscillations also with a 
limited attraction region are possible. 

3. a = -1, 6<0. Possible forms of point mapping are shown in Figs_6,a-c which corres- 
pond to parameters that satisfy the conditions 

a) 0 < p < a - U,' ((a))-'; 
b) a - (f”’ (a)) 1 < p < f (a) - a; 
c) f(a) - a<p < a 

Note case c which corresponds to the presence of stochastic auto-oscillations with at- 
traction region (6,y,), where y, (and also point y = 0 ) is an unstable stationary point. 

4. a=--1,8>0. In this case independently of U and p<a, we have one and the same 
form of point mapping shown in Fig.7. It corresponds to the entirely stable equilibriumstate. 

4. Possible motion patterns and their corresponding regions of parameter 
values. Above we described all possible forms of straight line transformation into itself, 
generated by phase trajectories of the nonlinear Van der Pols oscillator with shocks impart- 
ing the aounter momentum p<a at the instant of the oscillator passing throught the equili- 
brium state at a velocity higher than a. It was shown that a fairly large number of cases 
corresponding to various numbers and patterns of stable motions, including those of stable 
equilibrium and periodic and stochastic auto-oscillations, are possible. 

The constraint p<a is not imposed on the momentum of p in the full investigation of 
the considered here mathematical model. This means that the effect of impact on the oscil- 
lator energy the latter can not only diminish but, also, be rised. Such widening of possible 
values of the momentum of p increases the eight possible fonnsofphase patterns, shown in Fig. 
4-7, by further three. Each phase pattern is defined by its stable motion clearly shown by 
the curves in Figs.4-7, except the regions of "suspected" stochastic motions, although the 
sufficient condition of stochasticity dy,ldy> 1 is not satisfied in them. The case shown 
in Fig.4,e is one of these. Stochastic auto-oscillations, as well as stable periodic motions 
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in which a phase point circulates several times 
around the equilibrium point, are also possible. 
Elucidation of this point involves a considerable 
amount of numerical calculations which, owing to 
the possibly fine structure of parameter space sub- 
division, are notalwaysexhaustive. Determination 
of the phase pattern and of its dependence on para- 
meters is in the remaining cases considerably simp- 
ler, in spite of being also based on the numeric- 
ally determined function f(y). 

Subdivision of the parameter plane a, p in 
regions of different phase pattern is shown in Figs. 
8,a and b, respectively, for a = -i and 6 = - 
0.1 (a)and for cc = -1 and 6 = O.lb by dash lines, 
and the regions denoted by encircled letters are 
shown in these figures for a = 1 and 15 = -0.2(a), 
and for a = 1 and 6 = 0.03 b , respectively and 
delineated by solid lines. 

Regions DlrDa, .., D,, of parameter planes a, p 
correspond to different phase patterns. To simplify 
their definition we use the following notation: O+ 
and O- for stable and unstable equilibrium states, 
oo+ and m- for stability and instability at infin- 
ity, p+ and p- for stable and unstable periodic 
motions, and I for the stochastic auto-oscillation. 

Each of the Di regions can now be defined by a set of such symbols, viz. 

D, (0-, m+), D, (O+, 00% Ds (0-, r+, m-) 

D, (0+, r, co+), Ds (0+, r-, r+, m-), Do (0-, rl+, r-, rz+, m-) 

DT (o+, ri, r+2, oo+), Ds (O-, I, co-), DB (0-, I, r-, m’) 

D,, (a+, rl-, I, rz-, OO+), D,, co-, 1, r-, r+, m-) 
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Thus region D, oorresponds to the case of unlimited growth of oscillations, & to the 
entire stability of the equilibrium state, D8 to entirely stable stochastic motions, D, to 
entirely stable periodic auto-oscullations, and D,,to the possibility of periodic and stoch- 
astic auto-oscillations, etc., depending on initial conditions. Stable motions and phase 
patterns undergo a change when passing through the boundaries of regions Di. 
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